PINNeik: Eikonal solution using physics-informed neural networks
نویسندگان
چکیده
The eikonal equation is utilized across a wide spectrum of science and engineering disciplines. In seismology, it regulates seismic wave traveltimes needed for applications like source localization, imaging, inversion. Several numerical algorithms have been developed over the years to solve equation. However, these methods require considerable modifications incorporate additional physics, such as anisotropy, may even breakdown certain complex forms equation, requiring approximation methods. Moreover, they suffer from computational bottleneck when repeated computations are perturbations in velocity model and/or location, particularly large 3D models. Here, we propose an algorithm based on emerging paradigm physics-informed neural networks (PINNs). By minimizing loss function formed by imposing train network output that consistent with underlying partial differential We observe sufficiently high traveltime accuracy most interest. also demonstrate how proposed harnesses machine learning techniques transfer surrogate modeling speed up updated models locations. Furthermore, use locally adaptive activation weighting terms improve convergence rate solution accuracy. show flexibility method incorporating medium anisotropy free-surface topography compared conventional significant algorithmic modifications. These properties PINN solver highly desirable obtaining flexible efficient forward engine seismological applications.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Deep Jointly-Informed Neural Networks
In this work a novel, automated process for determining an appropriate deep neural network architecture and weight initialization based on decision trees is presented. The method maps a collection of decision trees trained on the data into a collection of initialized neural networks, with the structure of the network determined by the structure of the tree. These models, referred to as “deep jo...
متن کاملPhysics of Neural Networks
The material basis of our thinking, intelligence and creativity are 1013-1014 nerve cells (neurons) which in our brain are densely packed into a grey sub stance weighing about 1.5 kg. Each neuron has — like the root of a tree — highly branched dendrites that collect information from about 10000 other nerve cells. This huge network, which on a microscopic scale looks rather homogeneous and diso...
متن کاملComputational physics: Neural networks
2 Networks of binary neurons 5 2.1 Neural information processing is noisy . . . . . . . . . . . . . 5 2.2 Stochastic binary neurons and networks . . . . . . . . . . . . . 11 2.2.1 Parallel dynamics: Little model . . . . . . . . . . . . . 13 2.2.2 Sequential dynamics . . . . . . . . . . . . . . . . . . . 13 2.3 Some properties of Markov processes . . . . . . . . . . . . . . 14 2.3.1 Eigenvalue s...
متن کاملEikonal Approach to Planck Scale Physics
We consider gravitational scattering of point particles with Planckian centre-of-mass energy and fixed low momentum transfers in the framework of general relativity and dilaton gravity. The geometry around the particles are modelled by arbitrary black hole metrics of general relativity to calculate the scattering amplitudes. However, for dilaton gravity, this modelling can be done only by extre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Geosciences
سال: 2021
ISSN: ['1873-7803', '0098-3004']
DOI: https://doi.org/10.1016/j.cageo.2021.104833